Inequalities That Lead to Exponential Stability and Instability in Delay Difference Equations

نویسندگان

  • Youssef Raffoul
  • YOUSSEF RAFFOUL
چکیده

We use Lyapunov functionals to obtain sufficient conditions that guarantee exponential stability of the zero solution of the delay difference equation x(t + 1) = a(t)x(t) + b(t)x(t− h). The highlight of the paper is the relaxing of the condition |a(t)| < 1. An instability criteria for the zero solution is obtained. Moreover, we will provide an example, in which we show that our theorems provide an improvement of some of the recent literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shift Operators and Stability in Delayed Dynamic Equations

In this paper, we use what we call the shift operator so that general delay dynamic equations of the form x (t) = a(t)x(t) + b(t)x(δ − (h, t))δ − (h, t), t ∈ [t0,∞)T can be analyzed with respect to stability and existence of solutions. By means of the shift operators we define a general delay function opening an avenue for the construction of Lyapunov functional on time scales. Thus, we use the...

متن کامل

Y . N . Raffoul SHIFT OPERATORS AND STABILITY IN DELAYED DYNAMIC EQUATIONS

In this paper, we use what we call the shift operator so that general delay dynamic equations of the form x∆(t) = a(t)x(t)+b(t)x(δ−(h,t))δ−(h,t), t ∈ [t0,∞)∩T can be analyzed with respect to stability and existence of solutions. By means of the shift operators, we define a general delay function opening an avenue for the construction of Lyapunov functional on time scales. Thus, we use the Lyapu...

متن کامل

Lyapunov Functionals that Lead to Exponential Stability and Instability in Finite Delay Volterra Difference Equations

We use Lyapunov functionals to obtain sufficient conditions that guarantee exponential stability of the zero solution of the finite delay Volterra difference equation x(t + 1) = a(t)x(t) + t−1 ∑ s=t−r b(t, s)x(s). Also, by displaying a slightly different Lyapunov functional we obtain conditions that guarantee the instability of the zero solution. The highlight of the paper is relaxing the condi...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Some recent global stability results for higher order difference equations ∗

We give a brief overview of some recent results for the global asymptotic stability of a difference equation xn+1 = f(n, xn, . . . , xn−k), n ≥ 0, assuming that the zero solution is the unique equilibrium. Different techniques are used, involving the use of new discrete inequalities, monotonicity arguments, and delay perturbation methods. For the particular case of linear autonomous difference ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009